Revised syllabus of M.Sc. Information Technology Semester III and IV (Based on Credit and grading system)

Semester III

Course	Course	Lectures	Cred	Practical	Hours	Credits	Total
Code	Nomenclature		its	Course			Credits
PSIT301	Embedded Systems	60	4	PSIT3P1	60	2	6
PSIT302	Information Security Management	60	4	PSIT3P2	60	2	6
Elective 1		60	4	Elective 1	60	2	6
PSIT303a	Virtualization			PSIT3P3a			
PSIT303b	Artificial Neural Networks			PSIT3P3b			
Elective 2		60	4	Elective 2	60	2	6
PSIT304a	Digital Image Processing			PSIT3P4a			
PSIT304b	Ethical Hacking			PSIT3P4b			

Semester IV

Course	Course	Lectures	Cred	Practical	Hours	Credits	Total
Code	Nomenclature		its	Course			Credits
PSIT401	Artificial	60	4				4
	Intelligence						
PSIT402	IT Infrastructure	60	4				4
	Management						
Elective 1		60	4	Elective 1	60	2	6
PSIT403a	Intelligent			PSIT4P3a			
	Systems						
PSIT403b	Real Time			PSIT4P3b			
	Embedded						
	Systems						
PSIT403c	Computer			PSIT4P3c			
	Forensics						
Elective 2		60	4	Elective 2	60	2	6
PSIT404a	Design of			PSIT4P4a			
	Embedded						
	Control Systems						
PSIT404b	Advanced Image			PSIT4P4b			
	Processing						
PSIT404c	Cloud			PSIT4P4c			
	Management						
PSIT405	Project		2	PSIT4P5		2	4

CLASS:	M. Sc. (Information technology)	CLASS: M. Sc. (Information technology)			
COURSI	E: Artificial Intelligence (PSI	T401)			
Periods	per week	Lecture	4		
1 Period	is 60 minutes TW	/Tutorial/Practic	4		
		al			
				NA1 -	
Evaluati	on System The	ony Evamination	Hours 3	Marks 60	
⊏vaiuati	on System Theo	ory Examination Internal	ა	40	
		Practical		50	
	Introduction: AI, Componer			12	
Unit – I	Knowledge and Knowledge Ba			Lectures	
	Logic and Computation: Class			Lectures	
	Symbol Tableau, Resolution,	* -			
	Solving, Model Logic, Tempor	-			
	Heuristic Search: Search-Bas		med Search, Water Jug		
	Problem, TSP, Branch and Bou	nd Method, TSP Al	gorithm. [Reference I]		
Unit- II	Game Playing: AND/OR Gra		em, Alpha-Beta Search,	12	
	Puzzle Solving, AI versus Cont			Lectures	
	Knowledge Representation: Structure of an RBS, Merit, Demerit and				
	Applicability of RBS, Sema	-	s, Conceptual Graphs,		
	Conceptual Dependency, Script				
	Automated Reasoning: Defar				
	Closed World Assumption, Pre				
	Reasoning, Model Based Rea	C.	d Reasoning, Reasoning		
	Models, Multimodels, Multimo	dal Reasoning.			
Unit-III	[Reference I]	vas Thaaram Davias	vian Natyyarlı Damnatar	12	
Omt-m	Probabilistic Reasoning: Bay and Shafer Theory of Evidence			Lectures	
	Knowledge Acquisition: Kr			Lectures	
			Induction, Analogical		
	Reasoning, Explanation-Based	•			
	Acquisition Tools.	2001111118, 111000011	2 200111118, 12110 1110 118		
	[Reference I]				
Unit-IV	Planning: Necessity of plann	ning, Planning Ager	nts, Planning generating	12	
	schemes, Non-hierarchical pla			Lectures	
	planning, Oppurtunistic plan	ning, Algorithm	for planning, planning		
	representation with STRIPS an	example.			
	Constraint Satisfaction Prob		- ·		
	search strategies for solving CS		CSP problem, Examples		
	of constraint satisfaction proble	em.			
	[Reference II]		- C		
Unit – V	Knowledge-Based Systems: S			12	
	in different Areas, Expert Syst	<u> </u>		Lectures	
	Comparative View, Ingredients	s of Knowledge-Bas	sed Systems, Web-based		
	Expert Systems. [Reference I]				
	Prolog: Prolog programming	factures Cristian C	Crinton of Dulas I ICT		

Title	Author/s	Edition	Publisher
Artificial Intelligence	R. B. Mishra	EEE	PHI
Artificial Intelligence & Soft	Anandita Das		SPD
Computing for Beginners	Bhattacharjee		
Artificial Intelligence	E.Rich and	2002	TMH
	K.Knight		
Artificial Intelligence: A Modern	S.Russel,	2002	Pearson
Approach	P.Norvig		Education

CLASS:	CLASS: M. Sc. (Information technology)			Semester – IV		
COURSE	: IT Infrastructure Mar	nagement (PSIT402)				
	per week	Lecture		4		
1 Period	is 60 minutes	TW/Tutorial/Practic		4		
		al				
			Hours	Marks		
Evaluation	on System	Theory Examination	3	60		
		Internal		40		
		Practical		50		
Unit – I		perspectives (attributes)				
		IT service management, b				
	, ,	ITIL?, What are servi				
		e, The concept of Good Pr				
		of Service Management,				
		nodel and the characteristic Mapping the Concepts				
	Service Lifecycle, How of	the				
	Service Lifecycle, flow of Service Strategy: Obje	rvice				
	Packages and Service Level Packages, Service Strategy Processes, Service Portfolio Management, Financial Management, Demand			-		
	Management, Service Strategy Summary, Interfaces with the Service Design Phase, Interfaces with the Service Transition Phase					
		ice Operation Phase, Inter		-		
		ovement Phase, Service S				
		e Strategy, Service Portfoli				
	Considerations, Financia	l Management Considerati	ons			
Unit- II		ves, Major Concepts, Five				
		vice Design Packages, S				
		el Management, Supplier	_			
		Management, Capacity				
		nt, IT Service Continuity				
	_	Management, Service De	_	-		
	Service Level Manageme	ent Considerations, Capacit	ty Manage	ment		

	Considerations, Availability Management Considerations, Information Security Management Considerations, Service Catalogue Management Considerations, ITSCM Considerations, Supplier Management Considerations	
Unit-III	Service Transition: Objectives, Service Transition Processes, Knowledge Management, Service Asset and Configuration Management, Change Management, Release and Deployment Management, Service Validation and Testing, Service Transition Summary, Service Transition Scenario, Knowledge Management Considerations, Service Asset and Configuration Management Considerations, Change Management Considerations, Release and Deployment Management Considerations, Service Validation and Testing Considerations	12 Lectures
Unit-IV	Service Operation: Objectives, Major Concepts, Service Operation Functions, The Service Desk, Technical Management, IT Operations Management, Application Management, Service Operation Processes, Event Management, Incident Management, Problem Management, Request Fulfillment, Access Management, Service Operation Summary, Service Operation Scenario, Functions, Processes	12 Lectures
Unit –V	Continual Service Improvement: Objectives, Major Concepts Continual Service Improvement Processes, Service Level Management, Service Measurement and Reporting, CSI (7 Step) Improvement Process, Continual Service Improvement Summary, Continual Service Improvement Scenario, Service Level Management Service Measurement and Reporting, CSI Process	12 Lectures

Title	Author/s	Edition	Publisher
ITIL V3 Foundation Complete			
Certification Kit			
Foundations of IT Service	Brady Orand	2 nd	
Management - The Unofficial		Edition	
ITIL® v3 Foundations Course			
ITILv3 Foundation Exam, The	Arjen de Jong		Van Harren
Study Guide	Axel Kolthof		
	Mike Pieper		
	Ruby Tjassing		
	Annelies van der		
	Veen		
	Tieneke		
	Verheijen		

CLASS: M. Sc. (Information technology)			nester – IV
COURSE: Intelligent Systems (PSIT403a)			
Periods per week	Lecture	4	
1 Period is 60 minutes	TW/Tutorial/Practic	4	
	al		
		Hours	Marks
Evaluation System	Theory Examination	3	60
	Internal		40
	Practical		50

Unit – I	Intelligent Agents: Agents and Environments, Good Behaviour: The Concept of Rationality, The Nature of Environments, Structure of Agents Problem Solving by searching: Problem-Solving Agents Example Problems, Searching for Solutions, Uninformed Search Strategies,	12 Lectures
	Informed Search and exploration: Informed (Heuristic) Search Strategies, Heuristic Functions, Local Search Algorithms and Optimization Problems, Local Search in Continuous Spaces, Searching with Nondeterministic Actions, Searching with Partial Observations, Online Search Agents and Unknown Environments	
Unit- II	Games: Optimal Decisions in Games, Alpha—Beta Pruning, Imperfect Real-Time Decisions, Stochastic Games, Partially Observable Games, State-of-the-Art Game Programs Constraint Satisfaction, Constraint Propagation: Inference in CSPs, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems Logical Agents: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving, Effective Propositional Model Checking, Agents Based on Propositional Logic First-Order Logic: Representation Revisited, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic, Inference in First-Order Logic, Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution,	12 Lectures
Unit-III	Planning: Classical Planning, Algorithms for Planning as State-Space Search, Planning Graphs, Other Classical Planning Approaches, Hierarchical Planning, Planning and Acting in Nondeterministic Domains, Multiagent Planning Uncertain Knowledge and Reasoning: Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use, The Wumpus World Revisited, Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Exact Inference in	12 Lectures

	Bayesian Networks, Approximate Inference in Bayesian Networks, Relational and First-Order Probability Models, Approaches to Uncertain Reasoning, Probabilistic reasoning over time: Inference in Temporal Models, Hidden Markov Models, Kalman Filters, Dynamic Bayesian Networks, Keeping Track of Many Objects	
Unit-IV	Simple Decision Making: Combining Beliefs and Desires under Uncertainty, The Basis of Utility Theory, Utility functions, Multiattribute Utility Functions, Decision Networks, Complex Decision Making: Sequential Decision Problems, Value Iteration, Policy Iteration, Partially Observable MDPs, Decisions with Multiple Agents: Game Theory Knowledge in Learning: Review of Forms and types of Learning, Logical Formulation of Learning, Knowledge in Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming,	12 Lectures
Unit –V	Statistical and Reinforced Learning: Statistical Learning, Learning with Complete Data, Learning with Hidden Variables: The EM Algorithm, Reinforcement Learning, Passive Reinforcement Learning, Active Reinforcement Learning, Generalization in Reinforcement Learning, Applications of Reinforcement Learning Natural Language Processing: Language Models, Text Classification, Information Retrieval, Information Extraction. Robotics: Introduction, Robot Hardware, Robotic Perception, Planning to Move, Planning Uncertain Movements, Moving, Robotic Software Architectures, Applications.	12 Lectures

Title	Author/s	Edition	Publisher
Artificial Intelligence: A Modern	Staurt Russell,	3 rd	Pearson
Approach	Peter Norvig	Edition	Education
Artificial Intelligence: Structures and	George F. Luger		Pearson
Strategies for Complex Problem			Education
Solving			
Artificial Intelligence	Patrick Winston		Pearson
			Education

Practicals (PSIT4P3a):

1.	Write a program using C/C++/Java for implementing the Depth First Search
	Algorithm. And also write the algorithm for the same.
2.	Write a program using C/C++/Java for implementing the Breadth First Search
	Algorithm.
3.	Apply domain specific heuristic to generate possible solution for the AI problems
	using.
	i. Greedy Best First Search.
4.	Implement the mechanism A* algorithm.

5.	Implement Recursive Breadth First Search.				
6.	Generate succession nodes and check possibility of finding solutions of the specified				
	problems using:				
	i. Steepest Ascent Hill Climbing				
	ii. Simulated Annealing				
7.	Optimize the search strategy for the suggested problems using:				
	i. Mini-max algorithm.				
	ii. Alpha Beta Pruning.				
8.	Find a solution to map-coloring as a constraint satisfaction problem using: Forward				
	checking.				
9.	Show the Implementation of Bayesian Network Classification.				
10.	Show the application of Hidden Markov Model.				
	All Practicals can be done using C++/ R / MATLAB.				

CLASS: M. Sc. (Information	n technology)	Sen	nester – IV
COURSE: Real-time Embe	dded Systems (PSIT403b)		
Periods per week	Lecture		4
1 Period is 60 minutes	TW/Tutorial/Practic	4	
	al		
		Hours	Marks
Evaluation System	Theory Examination	3	60
-	Internal		40
	Practical		50

Unit – I	Introduction- What is Real Time System, Application of real time	12
	system, A Basic Model of Real time system, Characteristics of Real	Lectures
	Time System, Safety and Realibility, Types of Real Time Task,	
	Timing Constraints, Modeling Timing Constraints.	
	Embedded Operating Systems	
	Fundamental Components, Example: Simple Little Operating	
	System	
	Caches	
	The Memory Hierarchy and Cache Memory, Cache Architecture,	
	Cache Policy	
Unit- II	Exception and Interrupt Handling	12
	Exception Handling, Interrupts, Interrupt Handling Schemes	Lectures
	Firmware	
	Firmware and Bootloader, Example: Sandstone	
	Memory Management	
	Moving from an MPU to an MMU, How Virtual Memory Works,	
	Details of the ARM MMU, Page Tables, The Translation	
	Lookaside Buffer, Domains and Memory Access Permission, The	
	Caches and Write Buffer.	

Unit-III	Real Time Task Scheduling Types of real time task and their characteristics, Task Scheduling, Clock driven scheduling, Hybrid Schedulers, Event Driven Scheduling, Earliest Deadline first scheduling, Rate Monotic Algorithm. Handling Resource Sharing and Dependencies Resource sharing among real time task, Priority Inversion, Prioroty inheritence protpcol, Highest locker protocol,prioroty ceiling protocol,Different types of priority inversion Under PCP,Important features of PCP, Resource sharing Protocol, Handling Task Dependencies.	12 Lectures
Unit-IV	Real Time Communication Basic Concept, Real Time Communication in Lan, Soft/Hard Real Time communication in a Lan, Bounded Access Protocol for Lans, Performance comparison, Real time communication over Packet Switched networks, QoS framework, Routing,Resource reservation, Rate Control, QoS Model-Integrated services and Differentiated Services.	12 Lectures
Unit –V	Real Time Databases Concept and Example of real time databases, Real time databases application design issues, Characteristics of temporal data, Concurrency control in real-time databases. Case study on commercial real time databases.	12 Lectures

Title	Author/s	Edition	Publisher
Real-Time Systems: Theory and	Rajib Mall	First	Pearson
Practice.			Publication
ARM system developer's guide:	software/Andrew	First	Elsevier
designing and optimizing system.	N. Sloss,		Publication
(Ch-8,Ch-9,Ch-12, Ch-14)	Dominic Symes,		
	Chris Wright.		
Embedded Systems Design	S. Heath	Second	Newnes
		Edition	Publication
Real-Time Systems: Theory and	Rajib Mall	First	Pearson
Practice.			Publication

Practicals (PSIT4P3b):

- 1) Schedule a task periodically; after 5 min xyz task has to perform (Hint JITTER).
- 2) Schedule a task non periodically; no specific time stamp is set for any task.
- 3) Shared resources management using SEMAPHORE.
- 4) Shared resources management using MUTEX.
- 5) Implement scheduling algorithm FIFO.
- 6) Implement scheduling algorithm ROUND ROBIN.

- 7) Implement scheduling algorithm RATE MONOTONIC.
- 8) Implement Inter process communication (IPC) using NAMED PIPES.
- 9) IPC using simple PIPES.
- 10) IPC using MAIL BOXES.
- 11) Using Client Socket & Server Socket (UDP/TCP) maintain data received from client node.
- 12) Small demonstration of Kernel Level & User Level Communications

CLASS: M. Sc. (Information ted		Sen	nester – IV
COURSE: Computer Forensic	S (PSI1403c)		
Periods per week	Lecture		4
1 Period is 60 minutes	TW/Tutorial/Practic	4	
	al		
		Hours	Marks
Evaluation System	Theory Examination	3	60
	Internal		40
	Practical		50

Unit – I	Computer Forensics and Investigation Processes, Understanding	12
	Computing Investigations, The Investigator's Office and	Lectures
	Laboratory, Data Acquisitions.	
Unit- II	Processing Crime and Incident Scenes, Working with Windows	12
	and DOS Systems, Current Computer Forensics Tools.	Lectures
Unit-III	Macintosh and Linux Boot Processes and File Systems, Computer	12
	Forensics Analysis, Recovering Graphics Files.	Lectures
Unit-IV	Virtual Machines, Network Forensics, and Live Acquisitions, E-	12
	mail Investigations, Cell Phone and Mobile Device Forensics	Lectures
Unit –V	Report Writing for High-Tech Investigations,	12
	Expert Testimony in High-Tech Investigations,	Lectures
	Ethics and High-Tech Investigations.	

Title	Author/s	Edition	Publisher
Guide to Computer Forensics and	Bell Nelson,	4 th Edition	Cengage
Investigations	Amelia		Learning
	Phillips, Christopher		
	Steuart		
Computer Forensics A Pocket Guide	Nathan Clarke		I.T G.vernance
			Publishing

1., Computer Forensics: Computer	John R. Vacca	2nd	Charles River
Crime Scene Investigation		Edition,	Media

Practicals (PSIT4P3c):

- 1. File System Analysis using The Sleuth Kit
- 2. Using Windows forensics tools
- 3. Using Data acquisition tools
- 4. Using file recovery tools
- 5. Using Forensic Toolkit (FTK)
- 6. Forensic Investigation using EnCase
- 7. Using Steganography tools
- 8. Using Password Cracking tools
- 9. Using Log Capturing and Analysis tools
- 10. Using Traffic capturing and Analysis tools
- 11. Using Wireless forensics tools
- 12. Using Web attack detection tools
- 13. Using Email forensics tools
- 14. Using Mobile Forensics software tools
- 15. Writing report using FTK

CLASS: M. Sc. (Information	technology)	Ser	nester – IV	
COURSE: Design of Embedded Control Systems (PSIT404a)				
Periods per week	Lecture		4	
1 Period is 60 minutes	TW/Tutorial/Practic	4		
	al			
		Hours	Marks	
Evaluation System	Theory Examination	3	60	
-	Internal		40	
	Practical		50	

Unit –	Introduction to microcontrollers	12
I	Microprocessors and microcontrollers, History, Embedded vs	Lectures
	external memory devices, 8-bit and 16-bit microcontrollers, RISC	
	and CISC processors, Harvard and Von Neumann architectures,	
	Commercial microcontroller devices. Industrial applications.	
	Design with Atmel microcontrollers	
	Architecture overview of Atmel 89C51, Pin description of 89C51,	
	Using flash memory devices Atmel 89CXX, Power saving options.	
Unit- II	PIC Microcontrollers	12
	Overview, PIC16C6X/7X, Reset actions, Oscillators, Memory	Lectures
	organization, PIC16C6X/7X instructions, Addressing modes, I/O	
	ports, Interrupts PIC16C61/71, PIC16C61/71 timers, PIC16C 71	
	ADC,	
	PIC16F8XX Flash microcontrollers	

	Introduction, pin diagram, status registers, options_reg registers, power control registers, PIC16F8 program memory, PIC16F8 data memory, Data EEPROM, Flash program EEPROM, Interrupts PIC16F877, I/O ports, Timers More about PIC microcontrollers Introduction, Capture/compare/PWM modules in PIC16F877,	
	Master synchronous serial port (MSSP) module, USART, ADC	
Unit-	ADME LILLS 4	12
Unit- III	ARM Embedded Systems The RISC Design Philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software, ARM Processor Fundamentals Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions, Architecture Revisions, ARM Processor Families	Lectures
Unit-	Introduction to the ARM Instruction Set	12
IV	Data Processing Instructions, Branch Instructions, Load-Store Instructions, Software Interrupt Instruction, Program Status Register Instructions, Loading Constants, ARMv5E Extensions, Conditional Execution Introduction to the Thumb Instruction Set Thumb Register Usage, ARM-Thumb Interworking, Other Branch Instructions, Data Processing Instructions, Single-Register Load-Store Instructions, Multiple-Register Load-Store Instructions, Software Interrupt Instruction.	Lectures
Unit - V	Writing and Optimizing ARM Assembly Code Writing Assembly Code, Profiling and Cycle Counting, Instruction Scheduling, Register Allocation, Conditional Execution, Looping Constructs, Bit Manipulation, Efficient Switches, Handling Unaligned Data	12 Lectures

Bootis / Iterer ences			
Title	Author/s	Edition	Publisher
Microcontrollers theory and	Ajay Deshmukh	First	Tata
applications (UnitI and II)			McGraw-
			Hill
ARM system developer's guide:	Andrew N. Sloss,	First	Elsevier
designing and optimizing system.	Dominic Symes, Chris		Publication
(Unit III to V)	Wright.		

Practicals (PSIT4P4a):

- 1. Interfacing of LED, relay, Push Button
- 2. Sending and Receive Data Serially to/from PC.
- 3. Interfacing Wireless Module using ASK and FSK
- 4. Interfacing PC Keyboard.
- 5. Interfacing with EEPROM using I2C BUS.
- 6. Using a Watchdog Timer.
- 7. Using an External RTC.

- 8. Design a 4 bit binary counter.
 9. DC Motor Control using PWM module.
 10. Interfacing of temperature sensor.
 11. Interfacing a 7 segment display.
 12. Scrolling text message on LED dot matrix display

CLASS: M. Sc. (Information technology)		Semester – IV	
COURSE: Advanced Image	Processing (PSIT404b)		
Periods per week	Lecture	4	
1 Period is 60 minutes	TW/Tutorial/Practic	4	
	al		
		Hours	Marks
Evaluation System	Theory Examination	3	60
_	Internal		40
	Practical		50

Unit – I	Enhancement in Frequency domain	12
	Introduction, 2-D Discrete Fourier Transform, Properties of	Lectures
	Fourier transform, Basic filtering in the frequency domain,	

	Smoothing and Sharpening filters, FFT algorithm. Discrete cosine transform (DCT), KL (PCT) transform, HAAR, Basics of wavelets. Remote Sensing Introduction (Passive and Active sensing), Electromagnetic remote sensing process, Physics of radiant energy, Energy source and its characteristics, Atmospheric interactions with electromagnetic radiation, Energy interaction with Earth's surface materials.	
Unit- II	Microwave Remote Sensing Introduction, The Radar principle, Factors affecting microwave measurements, Radar wavebands, Side looking airborne (SLAR) systems, Synthetic Aperture Radar (SAR), Polarimetric SAR (PolSAR), Interaction between microwaves and Earth's surface, Interpreting SAR images, Geometric characteristics. Remotes Sensing Platforms and Sensors Introduction, Satellite system parameters, Spatial Resolution, Spectral Resolution, Radiometric Resolution, Temporal resolution, Imaging sensor systems (thermal, multispectral and microwave imaging), Earth resources satellites, Meteorological satellites, Satellites carrying microwave sensors, OCEASAT-1, IKONOS, Latest trends in remote sensing platforms and sensors (weather, land observation and marine satellites).	12 Lectures
Unit-III	Image Analysis Introduction, Visual interpretation, Elements of visual interpretation, Digital processing, Pre-processing, Enhancement, Transformations, Classification, Integration, Classification accuracy assessment. Applications Introduction, Agriculture, Forestry, Geology, Hydrology, Sea Ice, Land cover, Mapping, Oceans and Costal.	12 Lectures
Unit-IV	Medical Image Processing Various modalities of medical imaging, Breast cancer imaging, Mammographic imaging, Ultrasound imaging, Magnetic resonance imaging (MRI), Breast thermograph imaging, Problems with medical images. Image enhancement, Spatial domain methods, Frequency domain methods, Other modalities of medical imaging, Radiography, Positron emission tomography (PET), Computed tomography angiography (CTA), Echocardiogram.	12 Lectures
Unit –V	Feature Extraction and Statistical Measurement Selection of features, Shape related features, Shape representation, Bounding box, Shape matrix, Moments of region and shape, Co- occurrence matrix, Principle feature analysis (PFA), Fourier descriptors, Snake boundary detection, Snake algorithm, Texture analysis, Texture features, Feature extraction using discrete Fourier transform, wavelet transform, Gabor filters for texture analysis, Breast tissue detection, Analysis of tissue structure.	12 Lectures

Title	Author/s	Edition	Publisher
Text Book of Remote Sensing and	M. Anji Reddy	4 th	BS publication
Geographical Information Systems		Edition	
Remote Sensing and Image	Lillesand, T.M.	6 th edition.	John Wiley and
Interpretation	and Kiefer, R.W.		Sons Inc.
Medical Image Processing Concepts	Sinha, G.R.,		PHI
and Applications	Patel, Bhagwati		
	Charan		
Digital Image Processing	Gonzalez and	3 rd Edition	Pearson
	Woods		
Digital Image Processing and Analysis	Bhabatosh	2 nd Edition	PHI
	Chanda, Dwijesh		
	Dutta Majumder		

Practicals (PSIT4P4b):

Note:

- 1. All the practical can be done in C, C++, Java or Matlab, PolSARPro, Nest, ImageJ, R and ENVI
- 2. Satellite images can be downloaded from
 - a. http://bhuvan3.nrsc.gov.in/bhuvan/bhuvannew/bhuvan2d.php
 - b. http://landsat.usgs.gov/Landsat Search and Download.php
 - c. http://uavsar.jpl.nasa.gov/
 - d. http://airsar.jpl.nasa.gov/
- 3. Medical images can be downloaded from
 - a. http://www.barre.nom.fr/medical/samples/

1	Apply DFT on Image
2	WAP for implementing LPF
	1. Ideal LPF on square image
	2. Butterworth filter
	3. Gaussian filter
3	WAP for implementing HPF
	1. Ideal HPF on square image
	2. Butterworth filter
	3. Gaussian filter
4	1. WAP for high boost filtering on square image
	2. WAP for homomorphic filtering on square image
5	Acquire satellite/medical image and apply pre-processing techniques to improve the quality of image (use different low pass filters and compare the results)
6	Apply different image enhancement techniques (to improve contrast, brightness, sharpness) on satellite image
7	Apply different supervised classification techniques to classify the satellite image (minimum distance, maximum likelihood, decision tree, ANN)
8	Apply different clustering algorithms (K-means, ISODATA)
9	Apply compression and decompression algorithm on image (Huffman coding, Arithmetic encoding, LZW encoding)
10	Apply DCT and PCA on image.

CLASS: M. Sc. (Information technology)		Semester – IV	
COURSE: Cloud Managemen	t (PSIT404c)	1	
Periods per week	Lecture	4	
1 Period is 60 minutes	TW/Tutorial/Practic	4	
	al		
		Hours	Marks
Evaluation System	Theory Examination	3	60
	Internal		40
	Practical		50

Unit – I	Virtualized Data Center Architecture: Cloud infrastructures; public, private, hybrid. Service provider interfaces; Saas, Paas, Iaas. VDC environments; concept, planning and design, business continuity and disaster recovery principles. Managing VDC and cloud environments and infrastructures	12 Lectures
Unit- II	Storage Network Design: Architecture of storage, analysis and planning. Storage network design considerations; NAS and FC SANs, hybrid storage networking technologies (iSCSI, FCIP, FCoE), design for storage virtualization in cloud computing, host system design considerations IP-SAN: Introduction, iSCSI—components of iSCSI, iSCSI host connectivity, topologies for iSCSI connectivity, iSCSI discovery, iSCSI names, iSCSI session, iSCSI PDU, ordering and numbering, iSCSI security and error handling, FCIP—FCIP topology, FCIP performance and security, iFCP—iFCP topology, iFCP addressing and routing, iFCP gateway architecture, FCOE architecture.	12 Lectures
Unit-III	Cloud Management: System Center 2012 and Cloud OS, Provisioning Infrastructure: Provisioning Infrastructure with Virtual Machine Designing, Planning and Implementing. Managing Hyper-V Environment with VMM 2012. Provisioning self-service with AppController, AppController essentials, Managing Private, Public, Hybrid clouds. AppController cmdlets.	12 Lectures
Unit-IV	Managing and maintaining with Configuration Manager 2012, Design, Planning, Implementation, Administration, Distributing Applications, Updates, Deploying Operating Systems, Asset Management and reporting. Backup and recovery with Data Protection Manager. Design, Planning, Implementation and Administration.	12 Lectures
Unit –V	Implementing Monitoring: Real-time monitoring with Operations Manager, Proactive monitoring with Advisor, Operations Design,	12 Lectures

Planning, Implementation, Administration, Monitoring, Alerting, Operations and Security reporting. Building private clouds: Standardisation with service manager, Service Manager 2012: Design, Planning, Implementing, Incident Tracking, Automation with orchestrator, System Orchestrator 2012: Design, Planning, Implementing. Windows Azure Pack.

Books / References

Title	Author/s	Edition	Publisher
Introducing Microsoft System Center	Mitch		Microsoft
2012, Technical Overview	Tulloch,		
	Symon		
	Perriman		
	and Symon		
	Perriman		
Microsft System Center 2012 Unleashed	Chris		Pearson
	Amaris,		Education
	Rand		
	Morimoto,		
	Pete		
	Handley,		
	David E.		
	Ross,		
	Technical		
	Edit by		
	Yardeni		
The.Official.VCP5.Certification.Guide		Aug.2012	VMware.Press
VCAP5-DCD Official Cert Guide			VMware.Press
Automating vSphere with VMware			
vCenter Orchestrator			
VMware Private Cloud Computing with			
vCloud Director			
Managing and optimizing VMWare			
VSphere deployment			
Storage Networks: The Complete	Robert		
Reference	Spalding		
Storage Networking Protocol Fundamentals	James Long		
Storage Networking Fundamentals: An	Marc Farley		
Introduction to Storage Devices,			
Subsystems, Applications, Management,			
and Filing Systems			

Practicals (PSIT4P4c):

- 1. Managing Hyper –V environment with SCVVM 2012
- 2. Provisioning Self-service with AppController
- 3. Managing Private Cloud with AppController
- 4. Using Data Protection Manager for Backup and Recovery
- 5. Using Operations Manager for real-time monitoring
- 6. Using Advisor for proactive monitoring
- 7. Using Service Manager to standardize

- 8. Using Orchestrator for automation9. Implementing Windows Azure Pack10. Using Configuration Manager 2012 for managing and maintaining